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Abstract. 
The software development process is committed at producing high quality software systems. In 
order to reach this goal it is possible to integrate formal methods software analysis and verifica­
tion tools along the development process. In this work we present an integrated working envi­
ronment that aims at guiding the software engineer along the most relevant moments of a soft ­
ware system lifetime: its development, its verification, its maintenance up to a complete re-struc­
turing. The core of the proposed environment is the language XAL , a timed and parametric 
state-based language. After defining its syntax and semantics we show a novel cutoff theorem for  
it,  proving that  parametric  and timed system can be  model  checked.  We then describe  two  
methodologies: the former helps in restructuring existing applications using XAL , extracting pa ­
rameterized-timed-finite-state models from legacy code. The latter is about conducting a formal 
verification using XAL and its cutoff theorem, if needed. The proposed language and method­
ologies are used in two case-studies. The first case study describes a system for monitoring a net­
work with many wireless devices. The second case study, instead, uses XAL in order to model 
check a data protection specification for a grid environment, namely the absence of privilege es ­
calation.
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1 Introduction

The software development process is committed at producing high quality software. Soft ­
ware systems have often a complex design in themselves: software infrastructures are rela­
tively cheap to realize and always new and more complex features come to mind when de­
signing a new system. The high degree of connectivity reached through computers and 
smart embedded devices, make it possible for a software system to have a very high impact 
on worldwide population. 

All this accounts for the need of reliable means for stressing software systems and veri­
fying their actually implementing the expected behaviors. If the system implements  more  
behaviors than required, it must also be checked that such behaviors do not undermine the  
system infrastructure. This happens, for example, when adding a new feature to the sys­
tem, that, by mistake, allows non authenticated users to access the system. 

One way to control software quality is by controlling the steps during software produc­
tion. Software engineering addresses this topic by comparing different software develop­
ment methodologies and discussing when and how to design tests for the software com­
ponents. Also very valuable is the definition of principles that guide software developers to 
simplify their  architectures,  following the  basic idea that  the  less artifacts  you have to  
check, and the less problems you are likely to encounter. One example of such guidelines 
is the so-called Don't-Repeat-Yourself (DRY) principle [1].

As some  authors conjecture, the most dangerous and lethal bugs are inherently those  
having the least probability to be observed even on a high number of executions  [2]. A 
long record of software faults that lead to disasters of different natures, testified the need 
for software systems we can rely upon [3]. 

This motivates the research about dependable software , whose aim is exactly to share  
knowledge about how to realize software we can depend upon[4] . This research leads sev­
eral authors to  the adoption of formal verification  because it is insensible  to probability  
of an event to occur.

In this work we present an effort for introducing formal methods into the software de­
velopment process of an IT company, namely Computer VAR ITT. Together, we devel­
oped languages and methodologies trying to reuse what was already well known in the lit­
erature, integrating it with some new results when needed. In particular we focused on the 
integration of model checking algorithms for timed systems and parameterized systems. 
The problem of model checking parametric systems is known to be undecidable in general 
[5]. Model checking algorithms for timed systems and parametric systems have been de­
fined separately, introducing suitable abstractions for those systems, whose state space is 
potentially infinite. We proved that systems that are both timed and parametric can be mod­
el checked as well, under some reasonable restrictions. This is at our knowledge a novel re ­
sult.

In Section 2 the language XAL is defined, that is an extension of the theory of networks  
of Timed Automata to express parameterized timed systems. In Section 3 and Section 4, 
respectively, we will introduce a methodology suggesting how to use XAL in order to re-
engineer an existing software system and verify a new or re-engineered software system. In 
Section 5 we give a description of the working environment. In particular we will underline 



how the tools we realized in the context of this project and those that will be added, can  
be used by the software engineer in order to be guided during the software production cy­
cle. Finally in Section 6 we will compare existing tools and notions with the ones we devel­
oped, and make some concluding remarks.

2 The XAL Language

XAL has been designed to extend the theory of networks of timed automata [6], [7]. XAL al­
lows to express programs as the cooperation of finite states timed automata. With respect 
to networks of timed automata, XAL adds the possibility of creating instances and restricting 
the scope of the synchronizations using a notion of local environment. The role of local envi­
ronments is to store the identifiers of acquaintances of a given automaton in XAL.

2.1 Syntax

Let us introduce a few preliminary notions, namely time constraints and id-expressions. A 
time constraint is an expression of the form:

 TC C :=true∣C⩽C∣C⩽ℚ+∣TC C∨TC C∣¬TC C  

where C denotes a set of clock variables, ℚ+ denotes the set of positive rational num­
bers. Id-expressions are instead terms like the following:

X :=∅∣V∣X∪X∣X∩ X∣X ∖ X

while statements have the following form:

U :=skip∣V ←?∣V ← X ∣U ; U

Above, V denotes a set of local variables.
Intuitively a time constraint will be used to specify when a transition is enabled, with re­

spect to the begin of the execution. Statements and id-expressions are used to specify how 
certain variables, denoting sets of instance identifiers, will be updated during the execution 
of a XAL program.

A XAL program has the following structure:

〈Σ , S , V ,Γ , ŝ , F , C , τ 〉

where:
• Σ is a set of symbols
• S is a set of states
• V is a set of local variables
• Γ is a set of synchronization channels
• ŝ∈S is a distinguished initial state
• F⊆S is the set of final states



• C is the set of local clock variables
• τ is a set of transitions

and all the mentioned sets are finite.
In XAL, programs are allowed several kinds of transitions: symbol transitions, new transi­

tions, send transitions and receive transitions. A generic transition has the following form:

τ={t ∣ t ∈ S×A×TC C×2
C
×U V×S }

Given a transition t=(s1,a ,ϕ , R , u , s2) , its components have intuitively the following 
meaning:
• s1∈S is the source state
• a is a different action depending on the transition type:
◦ σ∈Σ∪{ϵ} for symbol transitions
◦ new (l ) , l∈ℕ for new transitions
◦ send (γ , v) ,γ∈Γ , v∈V for send transitions
◦ recv (γ , v) ,γ∈Γ , v∈V for receive transitions

• ϕ∈TCC is the time constraint the enables/disable the transition at run-time
• R⊆C is a set of variables that must be reset after transition is taken
• u∈U is the update statement that describes how the local environment changes 

when the transition is taken
• s2∈S is the destination state-base

A XAL program, finally, is a collection of automaton definitions together with a distin­
guished main definition: 

〈 〈A1 ... An〉 , j 〉

where Ai are automaton definitions and 1⩽ j⩽n denotes the one that should be created at 
the being of the execution.

2.2 Operational Semantics

The semantics of XAL program interpretation is given in terms of labeled transitions sys­
tems, like usual for operational semantics [8]. Given a generic program 〈〈A1... An〉 , j〉 , 
the initial configuration is a term with the form 〈L1... Ln〉 where Li are lists of instances 
of dynamic size. Every item of L i is an instance of the following form: 〈s , clock , E 〉
where s denotes the current state of the instance, clock :C→ℝ+ is an assignment from 
local clock variables to positive reals and  E :V → 2(ℕ×ℕ) is the local environment that 
maps every variable to a set of pairs of integers. Every pair of integer (l,i) denotes an in­
stance of definition l whose identifier is i.

The computation step of a configuration is defined by the following transition relation:

(delay) 〈L1, ... , Lk 〉→
d 〈 L1+d , ... , Lk+d 〉

where:
d∈ℝ+



Above, notation Li + d denotes that all the clock assignments of instances in list Li are 
incremented by an equal amount d.

(local step) 〈 ...Ll ... 〉→
λ
〈 ...L l ' ... 〉

where:
t=(s ,σ ,ϕ , R , u , s ' ) is a symbol-transition in definition k
Lk (i)=〈s , clock , E 〉

clock satisfies time condition ϕ
Lk ' (i)=〈 s ' , clock [R←0] , E [u ]〉

In  this  last  rule,  Lk(i) represents  the  i-th  instance  of  definition  k.  The  notation 
clock [R←0] denotes a new clock assignment where variables contained in I are ze­

roed. Finally,  E[u] denotes a new environment where updates expressed by u are applied 
to E.

(creation) 〈 ... Lk ... Ll ...〉→〈 ... Lk ' ... Ll ' ...〉

where:
t=(s , new (l) ,ϕ , R , u , s ' ) is a new-transition in definition k
Lk (i)=〈s , clock , E 〉

clock satisfies time condition ϕ
Lk ' (i)=〈 s ' , clock [R←0] , E [NEW ←{n l+1}; u ]〉
L l '=L l : :〈 ŝ l , ̂clock l , Ê l 〉

In the above rule E [NEW ←nl+1 ; u] means that before applying modification u to 
environment E, the variable NEW is associated with the index of the newly created in­
stance in definition l, namely: nl + 1. Furthermore, L l '=L l : :〈 ŝ l , ̂clock l , Ê l 〉 means that 
at the end of list Ll is attached a new instance whose state is the initial state of definition l, 
the clock is the initial clock were all variables in Cl are assigned to zero, and the initial envi­
ronment El associates the empty set to every variable in Vl.

(synch) 〈 ...Lk ... Ll ...〉→〈 ...Lk ' ...L l ' ...〉

where:
t 1=( s1, send (γ , v1) ,ϕ1,R1,u1,s1 ' ) is a send-transition in definition k
t 2=(s2,recv (γ , v2) ,ϕ2,R2, u2, s2 ' ) is a receive-transition in definition l
Lk (i)=〈s , clock , E 〉
L l( jh)=〈 s jh

, clock jh
, E jh

〉 for h∈[1..m ]
clock satisfies time condition ϕ1 and clock j1

...clock jm
satisfy ϕ2

s=s1  and s j1
= ...=s jm

=s2
Lk ' (i)=〈 s ' , clock [R←0] , E [DST ←{(l , j1) , ... ,( l , j m)};u1]〉
L l ' ( j h)=〈 ŝ2 ' , clock jh

[R2← 0] , E jh
[SRC←{(k , i)}; u2]〉

In the synchronization rule we underline that  one sending instance interact with a group 
of receiving instances. All of them must agree on the channel name. After the synchro­
nization, the sending instance store in its local variable DST the identifiers of the receiving 



instances, while all the receiving instances store in their local environment the identifier of 
the sending instance.

2.3 A logic for parametric timed processes

Let us introduce Indexed-Timed CTL*, a branching time temporal logic that  unify In­
dexed-CTL* [9], [10] and Timed CTL [11], [12]. 

The terms that constitute valid formulas of IT-CTL* are the following:

ϕ := p( i) ∣ ϕ∧ϕ ∣ ¬ϕ( i) ∣ AΦ ∣ ∧iϕ

Φ := ϕ∣ Φ∧Φ ∣ ¬Φ(i) ∣ ΦU ∼cΦ

The definition follows the classic definition of a branching time temporal logic [13] where 
the first set of formula denotes so-called state formulas, that is formulas that will be validated 
against a single configuration. The latter set of formulas define  path-formulas, that is formulas 
whose truth value depend on a sequence of configurations.
Let us define a timed word as a sequence of configurations associated with a value in time: 
w = (c0,t0)(c1,t1)... . A timed word is valid if (ci,ci+1) is a valid transition for the XAL program 
under analysis, and ti = ti+1 in case a non delay transition happens, otherwise ti+1 = ti  + d, 
where d is the delay value. A timed run is defined as ρ:ℝ+

→Conf , where Conf is a con­
figuration  of  the  program,  and  such  that,  given  a  timed  word  w  = (c0,t0)(c1,t1)... then 
ρ( ti)=ci .

Using a XAL program as our Indexed-Timed Temporal Structure, we can define a satisfia­
bility relation of Indexed-Timed CTL* formula as follows:

c , t ∣= p( li) iff c=〈 ...L l ...〉 and Ll (i)= p

c , t ∣= ϕ1( li)∧ϕ2(l i) iff c ∣=ϕ1(l i) and c ∣=ϕ1(l i)

c , t ∣=¬ϕ1( li) iff c ∣≠ϕ1(l i)

c , t ∣= AΦ1(l i) iff for  all  paths ρ such  that  ρ(0)=c  then 
ρ , t ∣=Φ1(l i)

c , t ∣= ∧(l ,i ) ϕ1(l i) iff for any 1⩽l⩽k and 1⩽i⩽nl c , t ∣=ϕ1(l i)

ρ , t ∣= ϕ1(l i) iff ρ(t) ∣= ϕ1( li)

ρ , t ∣= Φ1( li)∧Φ2( li) iff ρ , t ∣= Φ1( li) and ρ , t ∣= Φ2(l i)

ρ , t ∣= ¬Φ1( li) iff ρ , t ∣≠Φ1(l i)

ρ , t ∣= Φ1(l i)U ∼cΦ2 iff ∃ t ' : t '≥t ∧ t '∼c . ρ(t ' ) , t ' ∣=Φ2(l i) and
∀t ' ' : t ' '≥t∧t ' '<t ' . ρ(t ' ' ) , t ' ' ∣=Φ1(l i)

Let us underline that in state formulas, there is exactly one free variable li denoting the in­
stance to which the formula is applied.



It is possible to that every XAL program can be converted onto an equivalent XAL pro­
gram such that every automaton instance can stay in their initial state for an indefinite  
amount of time.
From this it is possible to show the XAL monotonicity lemma:

Theorem 1 (XAL monotonicity lemma)

Given a generic XAL program with definitions V1 and V2, and given an Indexed-Timed 
CTL* formula of the form E ϕ then:

(1)∀n≥1 . (V 1,V 2)
(1,n)
∣= E ϕ(11)⇒(V 1,V 2)

(1,n+1)
∣= E ϕ(11)  

(2)∀n≥1 . (V 1,V 2)
(1, n)
∣= E ϕ(12)⇒(V 1,V 2)

(1,n+1)
∣= E ϕ(12)

The monotonicity lemma states that adding an instance to the system, a valid formula re ­
mains valid. Since A-formulas, that is formulas quantified over all-paths, are definable as

Aϕ(l i)=¬E ¬ϕ( li) , the result holds also for A-formulas.

Theorem 2 (XAL bounding lemma)
Given a generic XAL program with definitions V1 and V2, and given an Indexed-Timed 
CTL* formula of the form E ϕ , let us assume that c1 = |V2| + 1, c2 = |V2| + 2, then:

(1)∀n≥c1 . (V 1,V 2)
(1, n)
∣= E ϕ(11)⇒(V 1,V 2)

(1,c1)∣= E ϕ(11)

(2)∀n≥c2 . (V 1,V 2)
(1,n)
∣= E ϕ(11)⇒(V 1,V 2)

(1, c2 )∣= E ϕ(11)

This states that there is no need to verify a property on a system bigger than the cutoff 
size c1 or c2, depending on the property.

3 Re-engineering using XAL

As already stated, one of the research area where we intend to apply the XAL language is  
the reengineering of an existing Software System, often called refactoring. 

Restructuring a software system can be an expensive operation. Analogously to the usual 
software developing processes, the restructuring task can be thought as a cycle composed 
of several phases [14]:

1. Identify a new aspect of the system that deserves an improvement; 
2. Isolate the components that need to be modified and the refactoring operations 

that should be applied; 
3. Verify that the applied modifications preserves the behaviors of the system; 
4. Estimate the effects of the change on the software or development process; 
5. Update other software artifacts that depends on the code and may be inconsistent 

after the applied change (e.g. the documentation). 



In order to face the refactoring of a complex Software System, every functional and 
non-functional requirement of the system must be reconsidered, and associated with the 
components that implement each of them. A reverse engineering phase is thus needed, espe­
cially if the Software System is quite old.  Such phase is then followed by the recoding 
phase. All this considered, the problem of refactoring a real-world Software System is like­
ly to be overwhelming for a single programmer (or even a team of programmers).  Al­
though there cannot be such a thing as a silver-bullet solution to the problem of refactor ­
ing complex systems, whatever the available tools, formal methods can be a useful guid­
ance for the developing team along the whole process. 

The key idea of our architecture is to extract a XAL model from existing source code. 
The proposed methodology is depicted in  Figure 1. In the proposed approach the engi­
neer submit the source code to be analyzed. The DocXAL architecture extract the XAL 
model from it, and a collection of executable code., that would make the XAL model an 
executable program. Once the model is extracted, several actions are available: the code 
can be simulated to test its behavior and obtain a better insight of what the code is sup­
posed to do. In case the project has been manually re-engineered, a new model can be ex ­
tracted from the new source code and compared with the previous XAL model, to check 
whether they bisimulate each other,  thus certifying the correct reimplementation of the 
code. If code was not rewritten manually, code synthesis techniques could be adopted [15]. 
The engineer may also provide temporal logic specification in order to model check the  
extracted model and verify it is correct.

To our knowledge this architecture, both in its manual and automatic use, is a novel ap­
proach to software refactoring and re-engineering. 

4 Verifying using XAL

A verification methodology is usually a process operating on an object, the system under  
analysis, and trying to extract from it some knowledge with respect to a given hypothesis.  



The methodology outcome is usually a yes/no 
answer but the system and the hypothesis can 
be expressed in several different ways. At some 
extent,  if  the  methodology  is  automatized 
through proper tools, it can be seen as a means 
to obtain more insights on designed software. In 
principle, in fact, it may be used to ask questions 
about the computer system (i.e.  compliance to 
some specification) and obtain a total or partial 
answer. 

An architecture overview is sketched that de­
scribes how to use the available tools,  in what 
sequence,  and what data need to be provided. 
This overview is the verification workflow. 

Formalize specifications.
A first step in our verification methodology is 

to find a suitable Indexed-Timed CTL* formula 
that  matches  the  intended  specifications.  For 
this task it is possible to use any formula allowed 
by Theorem 2.

Splitting.
XAL programs  allow the  designer  to  intro­

duce  variables  that  will  restrict  the  scope  of 
send/receive actions at run-time. Based on this 
it  is possible to split  a given definition  in two 
sets of instances: those that will interact with another instance and those that will not. 

Remove.
Given a formal specification, it is possible to isolate those definitions that interact, di­

rectly or indirectly, with the definitions mentioned in the specification. Automaton that do 
not interact can be abstracted away.

Reducing.
This stage consists in the application of Theorem 2, thus reducing a parametric system 

to a fixed size system, computing the cutoff for every definition,  depending on its role 
with respect to the specification under analysis.

Model checking.
This is the final part of the work. The model must be converted onto a suitable specifi ­

cation for the chosen model checker. In our experiments we used UPPAAL for timed 
models, and NuSMV for untimed ones.

Figure 1: The XAL interpreter



5 A working environment

At the moment, the implemented working environment consists of:
• the XAL interpreter
• the XAL IDE
• the DocXAL IDE

The XAL interpreter implements the XAL operational semantics described in Section 
2.2. In order to make XAL models executable, every state in the specified automata can be  
attached to pieces of code written in PHP, representing the states behavior. 

At the moment the synchronization among the instances must be implemented. It is in ­
stead possible to execute the XAL program interactively. This means that at every step the 
computation can stop waiting for a user to input some data. Depending on it, the XAL  
program can decide how to continue its computation. We are currently analyzing how to 
implement a step-by-step execution mode, in order to allow easier debugging facilities.

The XAL IDE allows now to generate XAL programs by drawing it. The IDE is real ­
ized as an Eclipse plugin. This on one side allows the programmer to switch from a high-
level view, working on the XAL model of her/his programs, to a low-level view of the ex­
ecutable language used with XAL. On the other side allows to maintain a single-source  
project, and share the view and edit functionalities with the DocXAL IDE, that is instead 
meant to be used as a web application.

The DocXAL IDE allows the software engineer to send her/his source code to the  
DocXAL service and wait for its analysis to be completed. Since it is a rather complex 
task, it is preferable to run it on a remote machine. A messaging mechanism will notice the  
engineer when the analysis will terminate. Here the Rich Ajax Platform allows to reuse the 
XAL IDE code developed within the Eclipse-RPC, thus providing a unified interface to  
the engineer when using the XAL IDE on her/his own working station and the DocXAL 
IDE service.

6 Conclusions

One main result of this work is how theories of timed systems and parametric systems can 
be integrated. Often, it is possible to find in literature partial solutions to real-world prob­
lems, but then those partial solutions must be combined together and must be shown that  
the outcome of such combination is still a suitable framework. 

Our cutoff for timed and parametric systems is a novel results, as far as we know. Other  
authors approached the problem of verifying parametric timed processes [16] but in their 
case the specifications can be expressed only in terms of  unsafe  states  that  must not  be 
reached. In our result we allow a more flexible language for specifying properties to be 
checked, namely a subset of Indexed-Timed CTL*.

The restructuring methodology can be compared to existing tools for reverse engineer­
ing and design recovery, or other tools that extract models from source code. An example  
of the latter is Bandera [17]that extracts finite-state models from Java source code. It dif­
fers from our workflow because its main goal is to model check obtained models, thus  
they preprocess the program with a slicing phase followed by an abstraction phase. In our 
case, instead, the extracted XAL model is intended to be as complete as possible. The en­



gineer will decide, eventually, to abstract some parts of the code to consider them as a 
monolithic block that does not deserve to be analyzed and decomposed.

Other means for software translation, like TXL [18] which is a general purpose program 
rewriting grammar generator,  are more focused on the translation mechanisms. On the 
contrary, our platform aims at providing an entire tool-chain that possibly guides the engi­
neer. Nevertheless, it should be considered the possibility of letting the programmer to 
plug her/his own TXL transformation specification, in order to make the framework ex­
tensible.

About the verification methodology that we specified, it seems to us a novel approach 
to  software  verification.  As  far  as  we know,  the  basic  verification  tools  are  very  well 
known, but none or few attempts have been made in order to integrate them in a develop­
ing framework to let the engineer use them embodied in her/his own preferred IDE, side  
by side with the debugger, for example. The exposed methodology is now a sketch of a 
wizard-like procedure that we are going to implement and test on real-world case-studies 
in order to better evaluate the impact of software verification when used on a day-by-day 
basis, during software programming.
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