
Doctoral School on Engineering Sciences
Università Politecnica delle Marche

Extended summary

Formal Methods for Practical Reverse Engineering
and Software Verification

Curriculum: Ingegneria Informatica, Gestionale e dell'Automazione

Author

Francesco Spegni

Tutor(s)

Prof. Luca Spalazzi

Date: 31th January 2012

Abstract.
The software development process is committed at producing high quality software systems. In
order to reach this goal it is possible to integrate formal methods software analysis and verifica­
tion tools along the development process. In this work we present an integrated working envi­
ronment that aims at guiding the software engineer along the most relevant moments of a soft ­
ware system lifetime: its development, its verification, its maintenance up to a complete re-struc­
turing. The core of the proposed environment is the language XAL , a timed and parametric
state-based language. After defining its syntax and semantics we show a novel cutoff theorem for
it, proving that parametric and timed system can be model checked. We then describe two
methodologies: the former helps in restructuring existing applications using XAL , extracting pa ­
rameterized-timed-finite-state models from legacy code. The latter is about conducting a formal
verification using XAL and its cutoff theorem, if needed. The proposed language and method­
ologies are used in two case-studies. The first case study describes a system for monitoring a net­
work with many wireless devices. The second case study, instead, uses XAL in order to model
check a data protection specification for a grid environment, namely the absence of privilege es ­
calation.

Keywords.
Formal methods, parameterized model checking, refactoring, timed systems

1 Introduction

The software development process is committed at producing high quality software. Soft ­
ware systems have often a complex design in themselves: software infrastructures are rela­
tively cheap to realize and always new and more complex features come to mind when de­
signing a new system. The high degree of connectivity reached through computers and
smart embedded devices, make it possible for a software system to have a very high impact
on worldwide population.

All this accounts for the need of reliable means for stressing software systems and veri­
fying their actually implementing the expected behaviors. If the system implements more
behaviors than required, it must also be checked that such behaviors do not undermine the
system infrastructure. This happens, for example, when adding a new feature to the sys­
tem, that, by mistake, allows non authenticated users to access the system.

One way to control software quality is by controlling the steps during software produc­
tion. Software engineering addresses this topic by comparing different software develop­
ment methodologies and discussing when and how to design tests for the software com­
ponents. Also very valuable is the definition of principles that guide software developers to
simplify their architectures, following the basic idea that the less artifacts you have to
check, and the less problems you are likely to encounter. One example of such guidelines
is the so-called Don't-Repeat-Yourself (DRY) principle [1].

As some authors conjecture, the most dangerous and lethal bugs are inherently those
having the least probability to be observed even on a high number of executions [2]. A
long record of software faults that lead to disasters of different natures, testified the need
for software systems we can rely upon [3].

This motivates the research about dependable software , whose aim is exactly to share
knowledge about how to realize software we can depend upon[4] . This research leads sev­
eral authors to the adoption of formal verification because it is insensible to probability
of an event to occur.

In this work we present an effort for introducing formal methods into the software de­
velopment process of an IT company, namely Computer VAR ITT. Together, we devel­
oped languages and methodologies trying to reuse what was already well known in the lit­
erature, integrating it with some new results when needed. In particular we focused on the
integration of model checking algorithms for timed systems and parameterized systems.
The problem of model checking parametric systems is known to be undecidable in general
[5]. Model checking algorithms for timed systems and parametric systems have been de­
fined separately, introducing suitable abstractions for those systems, whose state space is
potentially infinite. We proved that systems that are both timed and parametric can be mod­
el checked as well, under some reasonable restrictions. This is at our knowledge a novel re ­
sult.

In Section 2 the language XAL is defined, that is an extension of the theory of networks
of Timed Automata to express parameterized timed systems. In Section 3 and Section 4,
respectively, we will introduce a methodology suggesting how to use XAL in order to re-
engineer an existing software system and verify a new or re-engineered software system. In
Section 5 we give a description of the working environment. In particular we will underline

how the tools we realized in the context of this project and those that will be added, can
be used by the software engineer in order to be guided during the software production cy­
cle. Finally in Section 6 we will compare existing tools and notions with the ones we devel­
oped, and make some concluding remarks.

2 The XAL Language

XAL has been designed to extend the theory of networks of timed automata [6], [7]. XAL al­
lows to express programs as the cooperation of finite states timed automata. With respect
to networks of timed automata, XAL adds the possibility of creating instances and restricting
the scope of the synchronizations using a notion of local environment. The role of local envi­
ronments is to store the identifiers of acquaintances of a given automaton in XAL.

2.1 Syntax

Let us introduce a few preliminary notions, namely time constraints and id-expressions. A
time constraint is an expression of the form:

 TC C :=true∣C⩽C∣C⩽ℚ+∣TC C∨TC C∣¬TC C

where C denotes a set of clock variables, ℚ+ denotes the set of positive rational num­
bers. Id-expressions are instead terms like the following:

X :=∅∣V∣X∪X∣X∩ X∣X ∖ X

while statements have the following form:

U :=skip∣V ←?∣V ← X ∣U ; U

Above, V denotes a set of local variables.
Intuitively a time constraint will be used to specify when a transition is enabled, with re­

spect to the begin of the execution. Statements and id-expressions are used to specify how
certain variables, denoting sets of instance identifiers, will be updated during the execution
of a XAL program.

A XAL program has the following structure:

〈Σ , S , V ,Γ , ŝ , F , C , τ 〉

where:
• Σ is a set of symbols
• S is a set of states
• V is a set of local variables
• Γ is a set of synchronization channels
• ŝ∈S is a distinguished initial state
• F⊆S is the set of final states

• C is the set of local clock variables
• τ is a set of transitions

and all the mentioned sets are finite.
In XAL, programs are allowed several kinds of transitions: symbol transitions, new transi­

tions, send transitions and receive transitions. A generic transition has the following form:

τ={t ∣ t ∈ S×A×TC C×2
C
×U V×S }

Given a transition t=(s1,a ,ϕ , R , u , s2) , its components have intuitively the following
meaning:
• s1∈S is the source state
• a is a different action depending on the transition type:
◦ σ∈Σ∪{ϵ} for symbol transitions
◦ new (l) , l∈ℕ for new transitions
◦ send (γ , v) ,γ∈Γ , v∈V for send transitions
◦ recv (γ , v) ,γ∈Γ , v∈V for receive transitions

• ϕ∈TCC is the time constraint the enables/disable the transition at run-time
• R⊆C is a set of variables that must be reset after transition is taken
• u∈U is the update statement that describes how the local environment changes

when the transition is taken
• s2∈S is the destination state-base

A XAL program, finally, is a collection of automaton definitions together with a distin­
guished main definition:

〈 〈A1 ... An〉 , j 〉

where Ai are automaton definitions and 1⩽ j⩽n denotes the one that should be created at
the being of the execution.

2.2 Operational Semantics

The semantics of XAL program interpretation is given in terms of labeled transitions sys­
tems, like usual for operational semantics [8]. Given a generic program 〈〈A1... An〉 , j〉 ,
the initial configuration is a term with the form 〈L1... Ln〉 where Li are lists of instances
of dynamic size. Every item of L i is an instance of the following form: 〈s , clock , E 〉
where s denotes the current state of the instance, clock :C→ℝ+ is an assignment from
local clock variables to positive reals and E :V → 2(ℕ×ℕ) is the local environment that
maps every variable to a set of pairs of integers. Every pair of integer (l,i) denotes an in­
stance of definition l whose identifier is i.

The computation step of a configuration is defined by the following transition relation:

(delay) 〈L1, ... , Lk 〉→
d 〈 L1+d , ... , Lk+d 〉

where:
d∈ℝ+

Above, notation Li + d denotes that all the clock assignments of instances in list Li are
incremented by an equal amount d.

(local step) 〈 ...Ll ... 〉→
λ
〈 ...L l ' ... 〉

where:
t=(s ,σ ,ϕ , R , u , s ') is a symbol-transition in definition k
Lk (i)=〈s , clock , E 〉

clock satisfies time condition ϕ
Lk ' (i)=〈 s ' , clock [R←0] , E [u]〉

In this last rule, Lk(i) represents the i-th instance of definition k. The notation
clock [R←0] denotes a new clock assignment where variables contained in I are ze­

roed. Finally, E[u] denotes a new environment where updates expressed by u are applied
to E.

(creation) 〈 ... Lk ... Ll ...〉→〈 ... Lk ' ... Ll ' ...〉

where:
t=(s , new (l) ,ϕ , R , u , s ') is a new-transition in definition k
Lk (i)=〈s , clock , E 〉

clock satisfies time condition ϕ
Lk ' (i)=〈 s ' , clock [R←0] , E [NEW ←{n l+1}; u]〉
L l '=L l : :〈 ŝ l , ̂clock l , Ê l 〉

In the above rule E [NEW ←nl+1 ; u] means that before applying modification u to
environment E, the variable NEW is associated with the index of the newly created in­
stance in definition l, namely: nl + 1. Furthermore, L l '=L l : :〈 ŝ l , ̂clock l , Ê l 〉 means that
at the end of list Ll is attached a new instance whose state is the initial state of definition l,
the clock is the initial clock were all variables in Cl are assigned to zero, and the initial envi­
ronment El associates the empty set to every variable in Vl.

(synch) 〈 ...Lk ... Ll ...〉→〈 ...Lk ' ...L l ' ...〉

where:
t 1=(s1, send (γ , v1) ,ϕ1,R1,u1,s1 ') is a send-transition in definition k
t 2=(s2,recv (γ , v2) ,ϕ2,R2, u2, s2 ') is a receive-transition in definition l
Lk (i)=〈s , clock , E 〉
L l(jh)=〈 s jh

, clock jh
, E jh

〉 for h∈[1..m]
clock satisfies time condition ϕ1 and clock j1

...clock jm
satisfy ϕ2

s=s1 and s j1
= ...=s jm

=s2
Lk ' (i)=〈 s ' , clock [R←0] , E [DST ←{(l , j1) , ... ,(l , j m)};u1]〉
L l ' (j h)=〈 ŝ2 ' , clock jh

[R2← 0] , E jh
[SRC←{(k , i)}; u2]〉

In the synchronization rule we underline that one sending instance interact with a group
of receiving instances. All of them must agree on the channel name. After the synchro­
nization, the sending instance store in its local variable DST the identifiers of the receiving

instances, while all the receiving instances store in their local environment the identifier of
the sending instance.

2.3 A logic for parametric timed processes

Let us introduce Indexed-Timed CTL*, a branching time temporal logic that unify In­
dexed-CTL* [9], [10] and Timed CTL [11], [12].

The terms that constitute valid formulas of IT-CTL* are the following:

ϕ := p(i) ∣ ϕ∧ϕ ∣ ¬ϕ(i) ∣ AΦ ∣ ∧iϕ

Φ := ϕ∣ Φ∧Φ ∣ ¬Φ(i) ∣ ΦU ∼cΦ

The definition follows the classic definition of a branching time temporal logic [13] where
the first set of formula denotes so-called state formulas, that is formulas that will be validated
against a single configuration. The latter set of formulas define path-formulas, that is formulas
whose truth value depend on a sequence of configurations.
Let us define a timed word as a sequence of configurations associated with a value in time:
w = (c0,t0)(c1,t1)... . A timed word is valid if (ci,ci+1) is a valid transition for the XAL program
under analysis, and ti = ti+1 in case a non delay transition happens, otherwise ti+1 = ti + d,
where d is the delay value. A timed run is defined as ρ:ℝ+

→Conf , where Conf is a con­
figuration of the program, and such that, given a timed word w = (c0,t0)(c1,t1)... then
ρ(ti)=ci .

Using a XAL program as our Indexed-Timed Temporal Structure, we can define a satisfia­
bility relation of Indexed-Timed CTL* formula as follows:

c , t ∣= p(li) iff c=〈 ...L l ...〉 and Ll (i)= p

c , t ∣= ϕ1(li)∧ϕ2(l i) iff c ∣=ϕ1(l i) and c ∣=ϕ1(l i)

c , t ∣=¬ϕ1(li) iff c ∣≠ϕ1(l i)

c , t ∣= AΦ1(l i) iff for all paths ρ such that ρ(0)=c then
ρ , t ∣=Φ1(l i)

c , t ∣= ∧(l ,i) ϕ1(l i) iff for any 1⩽l⩽k and 1⩽i⩽nl c , t ∣=ϕ1(l i)

ρ , t ∣= ϕ1(l i) iff ρ(t) ∣= ϕ1(li)

ρ , t ∣= Φ1(li)∧Φ2(li) iff ρ , t ∣= Φ1(li) and ρ , t ∣= Φ2(l i)

ρ , t ∣= ¬Φ1(li) iff ρ , t ∣≠Φ1(l i)

ρ , t ∣= Φ1(l i)U ∼cΦ2 iff ∃ t ' : t '≥t ∧ t '∼c . ρ(t ') , t ' ∣=Φ2(l i) and
∀t ' ' : t ' '≥t∧t ' '<t ' . ρ(t ' ') , t ' ' ∣=Φ1(l i)

Let us underline that in state formulas, there is exactly one free variable li denoting the in­
stance to which the formula is applied.

It is possible to that every XAL program can be converted onto an equivalent XAL pro­
gram such that every automaton instance can stay in their initial state for an indefinite
amount of time.
From this it is possible to show the XAL monotonicity lemma:

Theorem 1 (XAL monotonicity lemma)

Given a generic XAL program with definitions V1 and V2, and given an Indexed-Timed
CTL* formula of the form E ϕ then:

(1)∀n≥1 . (V 1,V 2)
(1,n)
∣= E ϕ(11)⇒(V 1,V 2)

(1,n+1)
∣= E ϕ(11)

(2)∀n≥1 . (V 1,V 2)
(1, n)
∣= E ϕ(12)⇒(V 1,V 2)

(1,n+1)
∣= E ϕ(12)

The monotonicity lemma states that adding an instance to the system, a valid formula re ­
mains valid. Since A-formulas, that is formulas quantified over all-paths, are definable as

Aϕ(l i)=¬E ¬ϕ(li) , the result holds also for A-formulas.

Theorem 2 (XAL bounding lemma)
Given a generic XAL program with definitions V1 and V2, and given an Indexed-Timed
CTL* formula of the form E ϕ , let us assume that c1 = |V2| + 1, c2 = |V2| + 2, then:

(1)∀n≥c1 . (V 1,V 2)
(1, n)
∣= E ϕ(11)⇒(V 1,V 2)

(1,c1)∣= E ϕ(11)

(2)∀n≥c2 . (V 1,V 2)
(1,n)
∣= E ϕ(11)⇒(V 1,V 2)

(1, c2)∣= E ϕ(11)

This states that there is no need to verify a property on a system bigger than the cutoff
size c1 or c2, depending on the property.

3 Re-engineering using XAL

As already stated, one of the research area where we intend to apply the XAL language is
the reengineering of an existing Software System, often called refactoring.

Restructuring a software system can be an expensive operation. Analogously to the usual
software developing processes, the restructuring task can be thought as a cycle composed
of several phases [14]:

1. Identify a new aspect of the system that deserves an improvement;
2. Isolate the components that need to be modified and the refactoring operations

that should be applied;
3. Verify that the applied modifications preserves the behaviors of the system;
4. Estimate the effects of the change on the software or development process;
5. Update other software artifacts that depends on the code and may be inconsistent

after the applied change (e.g. the documentation).

In order to face the refactoring of a complex Software System, every functional and
non-functional requirement of the system must be reconsidered, and associated with the
components that implement each of them. A reverse engineering phase is thus needed, espe­
cially if the Software System is quite old. Such phase is then followed by the recoding
phase. All this considered, the problem of refactoring a real-world Software System is like­
ly to be overwhelming for a single programmer (or even a team of programmers). Al­
though there cannot be such a thing as a silver-bullet solution to the problem of refactor ­
ing complex systems, whatever the available tools, formal methods can be a useful guid­
ance for the developing team along the whole process.

The key idea of our architecture is to extract a XAL model from existing source code.
The proposed methodology is depicted in Figure 1. In the proposed approach the engi­
neer submit the source code to be analyzed. The DocXAL architecture extract the XAL
model from it, and a collection of executable code., that would make the XAL model an
executable program. Once the model is extracted, several actions are available: the code
can be simulated to test its behavior and obtain a better insight of what the code is sup­
posed to do. In case the project has been manually re-engineered, a new model can be ex ­
tracted from the new source code and compared with the previous XAL model, to check
whether they bisimulate each other, thus certifying the correct reimplementation of the
code. If code was not rewritten manually, code synthesis techniques could be adopted [15].
The engineer may also provide temporal logic specification in order to model check the
extracted model and verify it is correct.

To our knowledge this architecture, both in its manual and automatic use, is a novel ap­
proach to software refactoring and re-engineering.

4 Verifying using XAL

A verification methodology is usually a process operating on an object, the system under
analysis, and trying to extract from it some knowledge with respect to a given hypothesis.

The methodology outcome is usually a yes/no
answer but the system and the hypothesis can
be expressed in several different ways. At some
extent, if the methodology is automatized
through proper tools, it can be seen as a means
to obtain more insights on designed software. In
principle, in fact, it may be used to ask questions
about the computer system (i.e. compliance to
some specification) and obtain a total or partial
answer.

An architecture overview is sketched that de­
scribes how to use the available tools, in what
sequence, and what data need to be provided.
This overview is the verification workflow.

Formalize specifications.
A first step in our verification methodology is

to find a suitable Indexed-Timed CTL* formula
that matches the intended specifications. For
this task it is possible to use any formula allowed
by Theorem 2.

Splitting.
XAL programs allow the designer to intro­

duce variables that will restrict the scope of
send/receive actions at run-time. Based on this
it is possible to split a given definition in two
sets of instances: those that will interact with another instance and those that will not.

Remove.
Given a formal specification, it is possible to isolate those definitions that interact, di­

rectly or indirectly, with the definitions mentioned in the specification. Automaton that do
not interact can be abstracted away.

Reducing.
This stage consists in the application of Theorem 2, thus reducing a parametric system

to a fixed size system, computing the cutoff for every definition, depending on its role
with respect to the specification under analysis.

Model checking.
This is the final part of the work. The model must be converted onto a suitable specifi ­

cation for the chosen model checker. In our experiments we used UPPAAL for timed
models, and NuSMV for untimed ones.

Figure 1: The XAL interpreter

5 A working environment

At the moment, the implemented working environment consists of:
• the XAL interpreter
• the XAL IDE
• the DocXAL IDE

The XAL interpreter implements the XAL operational semantics described in Section
2.2. In order to make XAL models executable, every state in the specified automata can be
attached to pieces of code written in PHP, representing the states behavior.

At the moment the synchronization among the instances must be implemented. It is in ­
stead possible to execute the XAL program interactively. This means that at every step the
computation can stop waiting for a user to input some data. Depending on it, the XAL
program can decide how to continue its computation. We are currently analyzing how to
implement a step-by-step execution mode, in order to allow easier debugging facilities.

The XAL IDE allows now to generate XAL programs by drawing it. The IDE is real ­
ized as an Eclipse plugin. This on one side allows the programmer to switch from a high-
level view, working on the XAL model of her/his programs, to a low-level view of the ex­
ecutable language used with XAL. On the other side allows to maintain a single-source
project, and share the view and edit functionalities with the DocXAL IDE, that is instead
meant to be used as a web application.

The DocXAL IDE allows the software engineer to send her/his source code to the
DocXAL service and wait for its analysis to be completed. Since it is a rather complex
task, it is preferable to run it on a remote machine. A messaging mechanism will notice the
engineer when the analysis will terminate. Here the Rich Ajax Platform allows to reuse the
XAL IDE code developed within the Eclipse-RPC, thus providing a unified interface to
the engineer when using the XAL IDE on her/his own working station and the DocXAL
IDE service.

6 Conclusions

One main result of this work is how theories of timed systems and parametric systems can
be integrated. Often, it is possible to find in literature partial solutions to real-world prob­
lems, but then those partial solutions must be combined together and must be shown that
the outcome of such combination is still a suitable framework.

Our cutoff for timed and parametric systems is a novel results, as far as we know. Other
authors approached the problem of verifying parametric timed processes [16] but in their
case the specifications can be expressed only in terms of unsafe states that must not be
reached. In our result we allow a more flexible language for specifying properties to be
checked, namely a subset of Indexed-Timed CTL*.

The restructuring methodology can be compared to existing tools for reverse engineer­
ing and design recovery, or other tools that extract models from source code. An example
of the latter is Bandera [17]that extracts finite-state models from Java source code. It dif­
fers from our workflow because its main goal is to model check obtained models, thus
they preprocess the program with a slicing phase followed by an abstraction phase. In our
case, instead, the extracted XAL model is intended to be as complete as possible. The en­

gineer will decide, eventually, to abstract some parts of the code to consider them as a
monolithic block that does not deserve to be analyzed and decomposed.

Other means for software translation, like TXL [18] which is a general purpose program
rewriting grammar generator, are more focused on the translation mechanisms. On the
contrary, our platform aims at providing an entire tool-chain that possibly guides the engi­
neer. Nevertheless, it should be considered the possibility of letting the programmer to
plug her/his own TXL transformation specification, in order to make the framework ex­
tensible.

About the verification methodology that we specified, it seems to us a novel approach
to software verification. As far as we know, the basic verification tools are very well
known, but none or few attempts have been made in order to integrate them in a develop­
ing framework to let the engineer use them embodied in her/his own preferred IDE, side
by side with the debugger, for example. The exposed methodology is now a sketch of a
wizard-like procedure that we are going to implement and test on real-world case-studies
in order to better evaluate the impact of software verification when used on a day-by-day
basis, during software programming.

References

[1] A. Hunt and D. Thomas, The pragmatic programmer: from journeyman to master. Addison-
Wesley Professional, 2000.

[2] G. J. Holzmann, “Economics of software verification,” in Proceedings of the 2001
ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineering , 2001,
pp. 80–89.

[3] R. I. Cook and M. F. O’Connor, “Thinking about accidents and systems,” in Improv­
ing medication safety. Mathesda, MD: American Society for Health-System Pharmacists , 2005, pp. 1-
21.

[4] D. Jackson, “A direct path to dependable software,” Communications of the ACM, vol.
52, no. 4, p. 78, Apr. 2009.

[5] K. R. Apt and D. С. Kozen, “Limits for automatic verification of finite-state concur­
rent systems,” Information Processing Letters, vol. 22, pp. 307–309, 1986.

[6] J. Bengtsson and W. Yi, “Timed automata: Semantics, algorithms and tools,” Lec­
tures on Concurrency and Petri Nets, vol. 3098, pp. 87-124, Springer, 2004.

[7] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer Science, vol.
126, no. 2, pp. 183-235, Apr. 1994.

[8] G. D. Plotkin, “A structural approach to operational semantics,” Technical report, Dept.
of Computer Science, Univ. of Aarhus, 1981, Reprinted in Journal of Logic and Algebraic Programming ,
vol. 60-61. , pp. 3-15, Elsevier, 2004.

[9] E. M. Clarke, O. Grumberg, and M. C. Browne, “Reasoning about networks with
many identical finite-state processes,” Proceedings of the fifth annual ACM symposium on Princi­
ples of distributed computing - PODC ’86, pp. 240-248, 1986.

[10] A. E. Emerson and V. Kahlon, “Reducing model checking of the many to the few,”
Automated Deduction-CADE-17, pp. 236–254, 2000.

[11] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking for real-time systems,” Pro­
ceedings of the Fifth Annual Symposium on Logic in Computer Science, pp. 414–425, 1990.

[12] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic model checking
for real-time systems,” Information and Computation, vol. 111, p. 193--244, 1994.

[13] A. E. Emerson, “Temporal and modal logic - Handbook of Theoretical Computer
Science,” vol. 5, no. 3, Elsevier, 1995, pp. 995-1072.

[14] T. Mens and T. Tourwé, “A survey of software refactoring,” Software Engineering,
IEEE Transactions on, vol. 30, no. 2, pp. 126–139, 2004.

[15] I. Technology, “Code Synthesis for Timed Automata,”, Nordic Journal of Comput­
ing, vol. 9 (4), Winter 2002

[16] P. A. Abdulla and B. Jonsson, “Model checking of systems with many identical
timed processes,” Theoretical Computer Science, vol. 290, no. 1, pp. 241-264, Jan. 2003.

[17] J. Corbett, M. Dwyer, and J. Hatcliff, “Bandera: Extracting finite-state models from
Java source code,” in Software Engineering, 2000. Proceedings of the 2000 International Conference
on, 2000, p. 439-448.

[18] J. R. Cordy, T. R. Dean, A. J. Malton, and K. a Schneider, “Source transformation
in software engineering using the TXL transformation system,” Information and Software
Technology, vol. 44, no. 13, pp. 827-837, Oct. 2002.

	1 Introduction
	2 The XAL Language
	2.1 Syntax
	2.2 Operational Semantics
	2.3 A logic for parametric timed processes

	3 Re-engineering using XAL
	4 Verifying using XAL
	5 A working environment
	6 Conclusions
	References

